## You don't have to throw your SDI baby away with the bathwater.

End-user case studies on deployments of all sizes, as well as post-deployment considerations

#### **Kevin Salvidge – Leader Europe Limited**





















#### Disclaimer

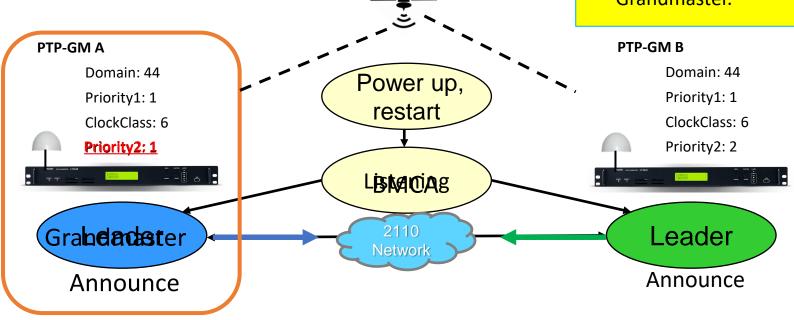
# The following presentations features real life events.

No customer have been named, to prevent any potential embracement.



#### **Reference Source**

Unlike BB/TLS in the SDI world, PTP comes with a number parameters, that if incorrect configured, can result in unexpected an unpleasant affects to your IP operations.

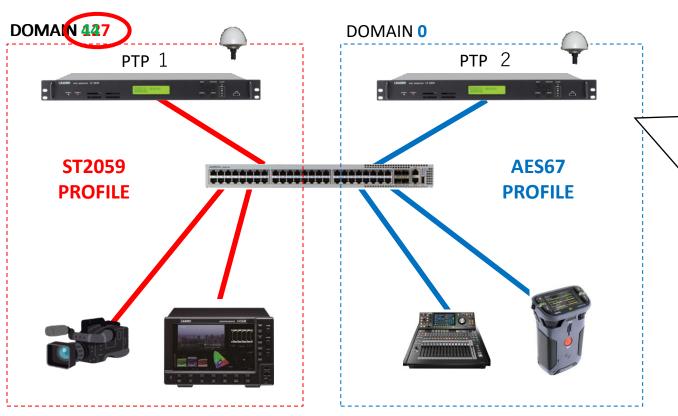

#### **Best Master Clock Algorithm**



- BMCA (Best Master Clock Algorithm)
  - Who is Grandmaster?
  - When devices powered on
  - PTP Devices Listen
  - Gather announce message



- > A key to the resiliency of the PTP is the BMCA.
- The BMCA allows a Leader to automatically become the Grandmaster or take over the duties of Grandmaster when the previous Grandmaster loses its GPS, gets disconnected due to a switch fault, or for what ever reason is unable to continue as Grandmaster.




**GPS Satellite** 

#### **PTP Domains**



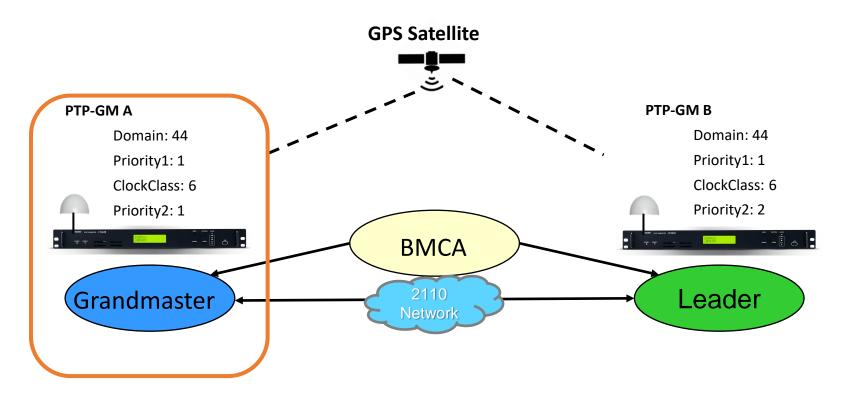
- System configuration with Domain divided
  - Some audio equipment only supports the profile of AES 67



Domains are for use of multiple PTP services simultaneously with one physical Ethernet connection.

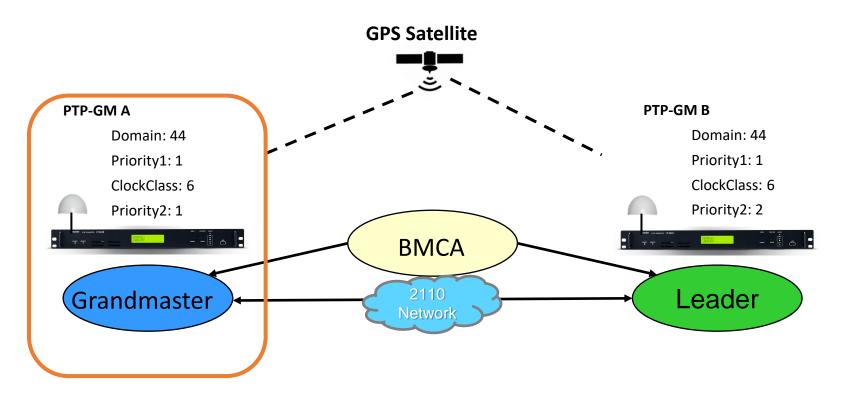
PTP operation is performed between devices having the same DOMAIN.

Domain 0 is used by Audio services for audio reference.


Domain 127 is the default for PTP, so any new equipment that is added to the network could be a Grandmaster via BMCA on Domain 127, so it is possible to have the new equipment take over without you knowing it.

#### Video equipment

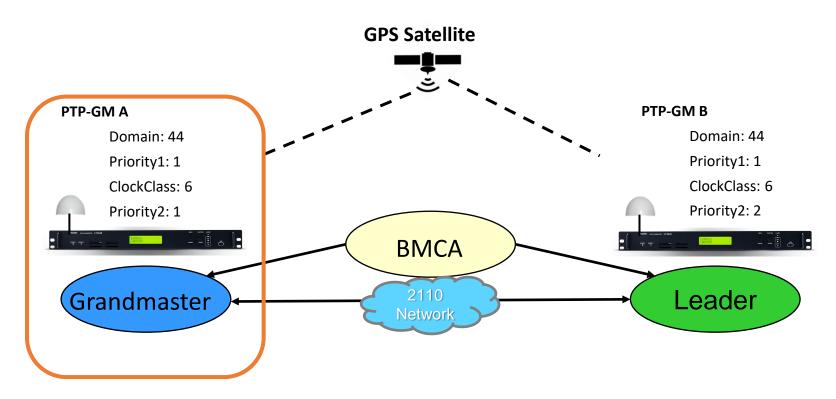
#### Audio equipment




If the Leader does not see an Announce message from a better clock within the Announce Time Out Interval, then it takes over the role of Grandmaster.





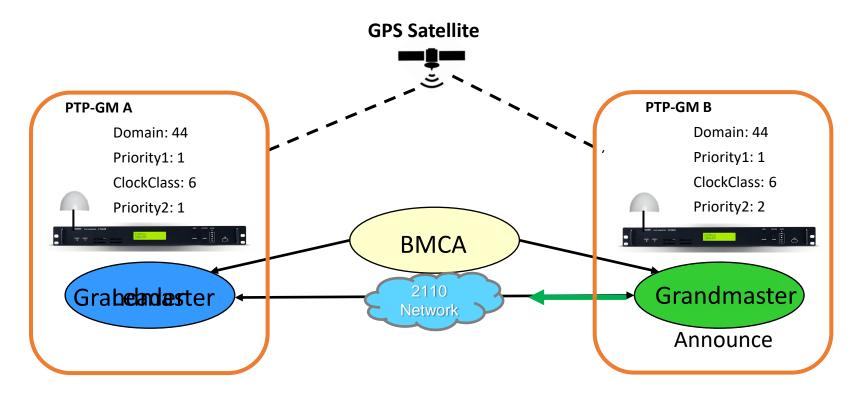

• This runs continuously so Leader capable devices are constantly on the look out for the possible loss of the current Grandmaster.





For this reason, you want the network detection timeout to be longer that the

Time out interval of the BMCA (Grandmaster / Leader)





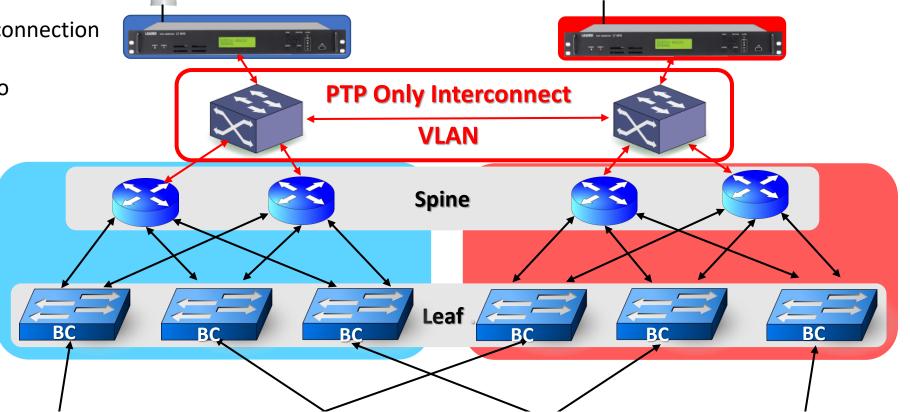

#### **Best Master Clock Algorithm**

HOWCASE

• If you don't, then the Leader capable devices will keep jumping to the conclusion that the Grandmaster has gone away and they need to take over.



#### Larger 2110 Leaf and Spine


(IP SHOWCASE

In an Air Gap Network the only connection between networks is the PTP communication between the two Grandmaster and the Leader

Each Leaf connects to every Spine in it own network

Each South bound Leaf Port is a Boundary Clock

Elesachendre BN/ICEs add electionsfsake place at the feeder switch level not Neveer rolovenBlanedrwiettia add metwechplines



**NOTE:** For Spine / Leaf network architectures the Leaf ports connected to PTP follower endpoints should always stay in Master state.

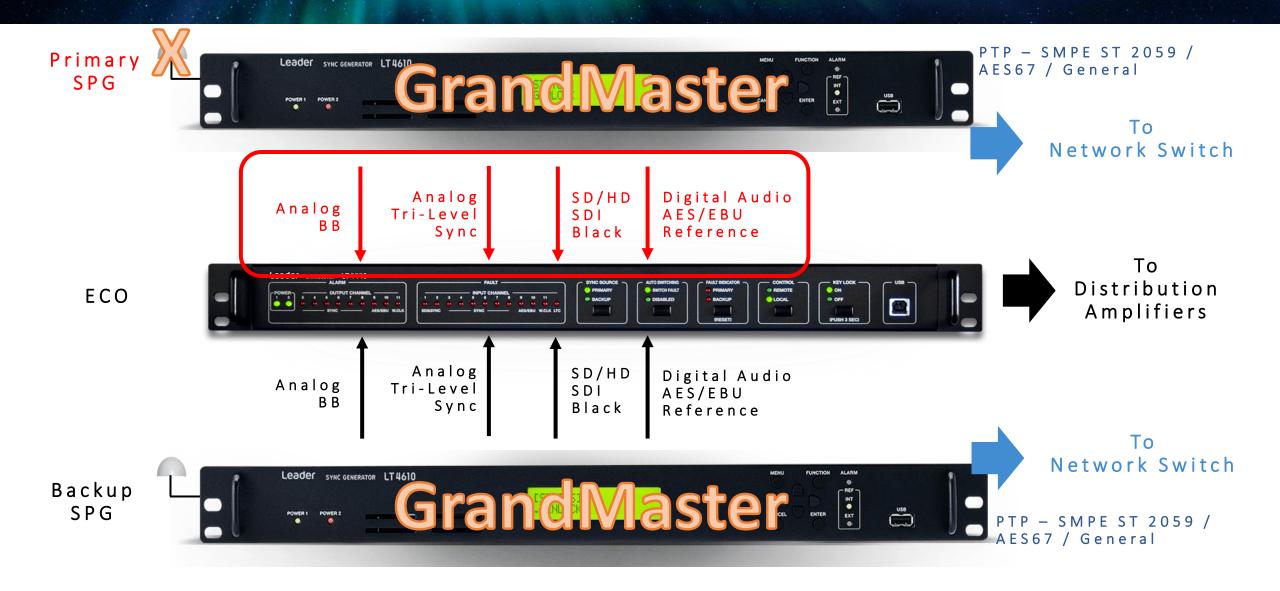
Configure this CLI to ensure they will always stay as masters, even if the Follower is misconfigured or a GM is accidently connected under this port.

#### **Best Master Clock Algorithm**

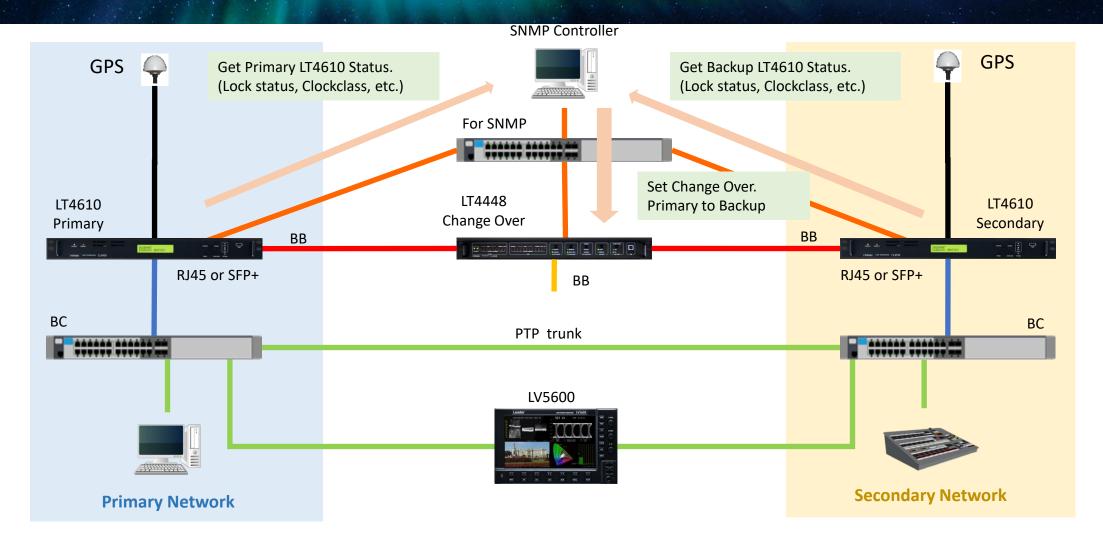


| 1920x1080/501 Y        | (CbCr(422) 10bit    | IP A                | TIME: 17:05:44                    |
|------------------------|---------------------|---------------------|-----------------------------------|
| VENT LOG LIST          | SAMPLE No.874       | << NOW LOGGING >    | ·>                                |
| 874: 2022/06/22 17:04: | 17 IP2 LINK UP      |                     |                                   |
| 873:2022/06/22 17:04:  | 17 IP2 LINK UP      | GMID:00-0           | 9-0d-ff-fe-01-0a-c2,PTP Cloc····  |
| 872:2022/06/22 17:04:  | 13 IP2 LINK UP      |                     |                                   |
| 871:2022/06/22 17:04:  | 13 IP2 LINK UP      | GMID:28-a           | f-fd-ff-fe-d9-9d-9b,PTP Clock···· |
| 870:2022/06/22 17:04:  | 07 IP1 LINK UP      | GMID:00-0           | 9-0d-ff-fe-01-0a-c2,              |
| 869:2022/06/22 17:00:  | 29 IP2 LINK UP      |                     |                                   |
| 868:2022/06/22 17:00:  | 29 IP1 LINK UP      |                     |                                   |
| 867:2022/06/22 17:00:  | 29 B 1920x1080/50   | 01                  |                                   |
| 866: 2022/06/22 17:00: | 28 B NO SIGNAL      |                     |                                   |
| 865:2022/06/22 17:00:  | 23 B 1920x1080/50   | 01                  |                                   |
| FCS                    | IP CS               | UDP CS              |                                   |
| Video1 RTP Sequence    | Video2 RTP Sequence | Video3 RTP Sequence | Video4 RTP Sequence               |
| Mbit Stream1           | Mbit Stream2        | Mbit Stream3        | Mbit Stream4                      |
| Interval Variation1    | Interval Variation2 | Interval Variation3 | Interval Variation4               |
| PTP Unlock             | PTP GMID            | PTP ClockClass      |                                   |
| Video1 RTP Timing      | Video2 RTP Timing   | Video3 RTP Timing   | Video4 RTP Timing                 |
| Audio1 RTP Timing      | Audio2 RTP Timing   | Audio3 RTP Timing   | Audio4 RTP Timing                 |
| ANC1 RTP Timing        | ANC2 RTP Timing     | ANC3 RTP Timing     | ANC4 RTP Timing                   |
| Video1 CMAX            | Video2 CMAX         | Video3 CMAX         | Video4 CMAX                       |
| Video1 VRX             | Video2 VRX          | Video3 VRX          | Video4 VRX                        |

#### Sync Pulse Generators (SPG's)


SHOWCASE




## Leader Sync Pulse Generators (SPG's) + PTP ( PSHOWCASE



## Leader Sync Pulse Generators (SPG's) + PTP (PSHOWCASE



## Leader Sync Pulse Generators (SPG's) + PTP (IP showcase



## Leader Sync Pulse Generators (SPG's) + PTP (PSHOWCASE







#### Ancillary Data

- Over the years, the SDI "Ancillary Data" system has become the home for lots of things.
  - Some are intrinsic to the video signal
  - Some are independent essences
  - And some have ended up there because it seemed like a good place to put it at the time.





### Video Payload ID (VPID) Codes SMPTE ST352

#### Is carried within the Ancillary data space to assist a device in quickly decoding the video signal.

SMPTE ST2110-20 specifies the transport of uncompressed active video

The Ancillary Data is managed as part of SMPT ST2110-40

## Leader Video Payload ID



| 1920x1080/59.94P YCbCr(422) 10bit | IP A             | TIME: 11:45:52   |
|-----------------------------------|------------------|------------------|
| PAYLOAD ID DISPLAY SMPT           | E ST352          |                  |
|                                   | SDI Output(SDP)  | ST2110-40        |
| INTERFACE LINE No.                | 10               |                  |
| BYTE1                             | 10001001 [89]    | 10001001 [89]    |
| VERSION ID                        | SMPTE ST352-2011 | SMPTE ST352-2011 |
| PAYLOAD ID                        | 1125(1080) LINE  | 1125(1080) LINE  |
| DIGITAL INTERFACE                 | 3Gb/s LEVEL-A    | 3Gb/s LEVEL-A    |
| BYTE2                             | 11001010 [CA]    | 11001010 [CA]    |
| TRANSPORT STRUCTURE               | PROGRESSIVE      | PROGRESSIVE      |
| PICTURE STRUCTURE                 | PROGRESSIVE      | PROGRESSIVE      |
| HDR / SDR                         | SDR              | SDR              |
| PICTURE RATE                      | 60/1.001         | 60/1.001         |
| BYTE3                             | 10000000 [80]    | 10000000 [80]    |
| ASPECT RATIO                      | 16:9             | 16:9             |
| H SAMPLING                        | 1920             | 1920             |
| COLORIMETRY                       | REC 709          | REC 709          |
| SAMPLING STRUCTURE                | 4:2:2 YCbCr      | 4:2:2 YCbCr      |
| BYTE4                             | 00000001 [01]    | 00000001 [01]    |
| CHANNEL ASSIGNMENT                | NOT USED         | NOT USED         |
| LUMINANCE / COLOR                 | YCbCr            | YCbCr            |
| AUDIO EMB MODE                    | NOT USED         | NOT USED         |
| BIT DEPTH                         | 10BIT            | 10BIT            |



#### • And now for a new challenge !

- To assist in the control and switching of IP multicast flows within a broadcast facilities broadcasters are using NMOS Orchestration systems to configure IP receivers.
- They configure receivers by means of **Session Description Protocol (SDP)**.
- Session Description Protocol does not deliver any media streams itself but is used between endpoints for negotiating on network metrics, media types and other associated properties.

### You don't have to



v=0o=LEADER 1649664978 1649664978 IN IP4 192.168.1.1 s=LV5600 SER05/06 t=00 a=group:DUP primary secor m=video 5000 RTP/AVP 96 v=0c=IN IP4 239.0.20.1/64 a=rtpmap:96 raw/90000 a=fmtp:96 sampling=YCbCi exactframerate=50; colorim TP=2110TPN; PM=2110BPM a=source-filter: incl IN IP4 2 a=ts-refclk:ptp=IEEE1588-20 a=mediaclk:direct=0 a=mid:primary m=video 5000 RTP/AVP 96 c=IN IP4 239.0.20.1/64 a=fmtp:96 sampling=YCbCi exactframerate=50; colorim TP=2110TPN; PM=2110BPM a=rtpmap:96 raw/90000 a=source-filter: incl IN IP42 a=ts-refclk:ptp=IEEE1588-20 a=mediaclk:direct=0 a=mid:secondary

#### -20 Video

s=LV5600 SER05/06 t=00

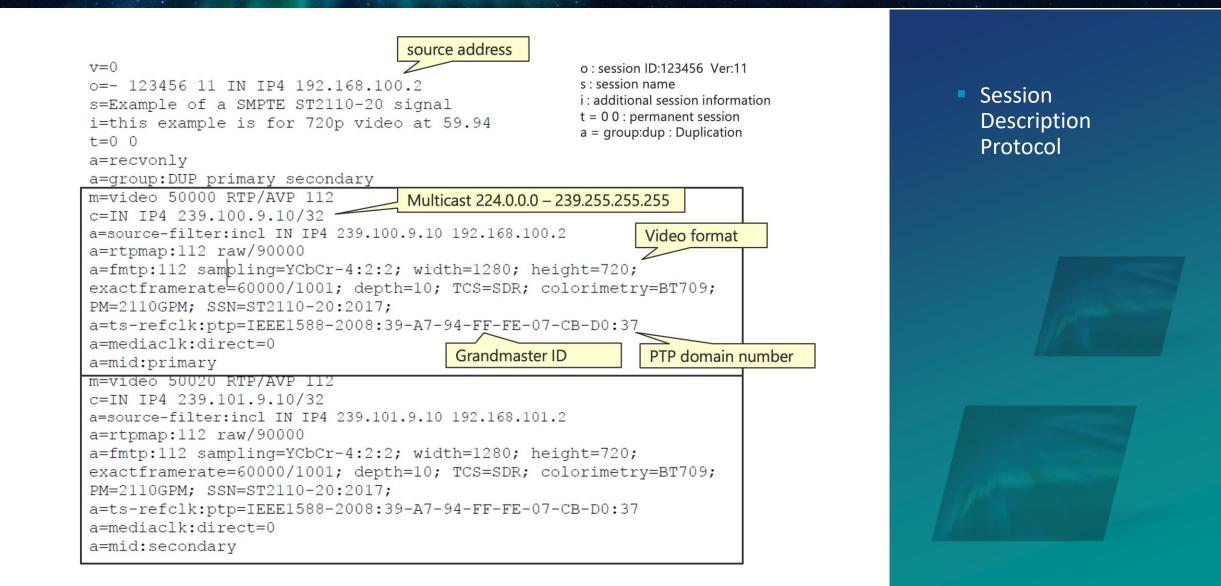
o=LEADER 1649664978 1649664978 IN IP4 192.168.1.1

a=group:DUP m=audio 5000 c=IN IP4 239.0 a=rtpmap:97 L a=ptime:1 a=source-filte a=ts-refclicptp a=mediaclkdi a=mid:priman m=audio 5000 c=IN IP4 239.0 a=rtpmap:97L a=ptime:1 a=source-filte a=ts-refclk:ptp a=mediaclkdi a=mid:second

v=0o=LEADER 1649664978 1649664978 IN IP4 192.168.1.1 s=LV5600 SER05/06 t=00 a=group:DUP primary secondary m=video 5000 RTP/AVP 100 c=IN IP4 239.0.40.1/64 a=rtpmap:100 smpte291/90000 a=source-filter: incl IN IP4 239.0.40.1 192.168.1.1 a=ts-refclk:ptp=IEEE1588-2008:00-0c-17-ff-fe-4c-62-05:127 a=mediaclk:direct=0 a=mid:primary m=video 5000 RTP/AVP 100 c=IN IP4 239.0.40.1/64 a=rtpmap:100 smpte291/90000 a=source-filter: incl IN IP4 239.0.40.1 192.168.2.1 a=ts-refclk:ptp=IEEE1588-2008:00-0c-17-ff-fe-4c-62-05:127 a=mediaclk:direct=0

#### -30 Audio

a=mid:secondary -40 ANC


#### Session Description Protocol

- Video
- Audio
- ANC Data











| NMOS CONNECTION LIST (IS-05) NMOS ON |                     |       |                 |             |                 |
|--------------------------------------|---------------------|-------|-----------------|-------------|-----------------|
| Receiver/Sender                      | Time                | Input | Source          | Destination | Response        |
| Audio3 G4                            |                     |       |                 |             |                 |
| Audio4 G1                            |                     |       |                 |             |                 |
| Audio4 G2                            |                     |       |                 |             |                 |
| Audio4 G3                            |                     |       |                 |             |                 |
|                                      |                     |       |                 |             |                 |
| ANC1                                 | 2022/09/02 01:19:27 | А     | 192.168.100.115 | 239.0.40.1  | HTTP/1.1 200 OK |
| 4100                                 |                     |       |                 |             |                 |

| =LV5600 SER05/06                                        |
|---------------------------------------------------------|
| =0 0                                                    |
| =group:DUP primary secondary                            |
| n=video 5000 RTP/AVP 100                                |
| =IN IP4 239.0.40.1/64                                   |
| =rtpmap:100 smpte291/90000                              |
| =source-filter: incl IN IP4 239.0.40.1 192.168.100.115  |
| =ts-refclk:ptp=IEEE1588-2008:00-0C-17-FF-FE-4C-62-05:44 |
| =mediaclk:direct=0                                      |
| =mid:primary                                            |
| n=video 5000 RTP/AVP 100                                |
| =IN IP4 239.0.40.1/64                                   |
| =rtpmap:100 smpte291/90000                              |
| =source-filter: incl IN IP4 239.0.40.1 192.168.100.120  |
| =ts-refclk:ptp=IEEE1588-2008:00-0C-17-FF-FE-4C-62-05:44 |
| =mediaclk:direct=0                                      |
| =mid:secondary                                          |
|                                                         |

Session Description Protocol

Being able to analysis the SDP is vital if an error has occurred in its creation and receivers on the network are unable to connect or display the IP stream.

The SDP can be copied and exported as a text tile for remote analysis.





#### **SDI Video Payload ID**

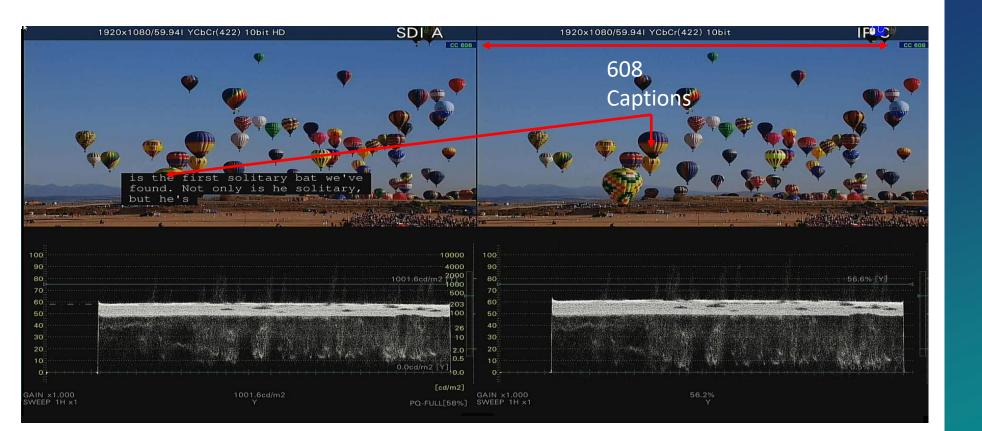


**SDP Video Payload ID** 

- Session Description Protocol
- In 'True Hybrid' operation, the Leader can display both the SDI Payload ID and the SDP to allow easy comparisons.



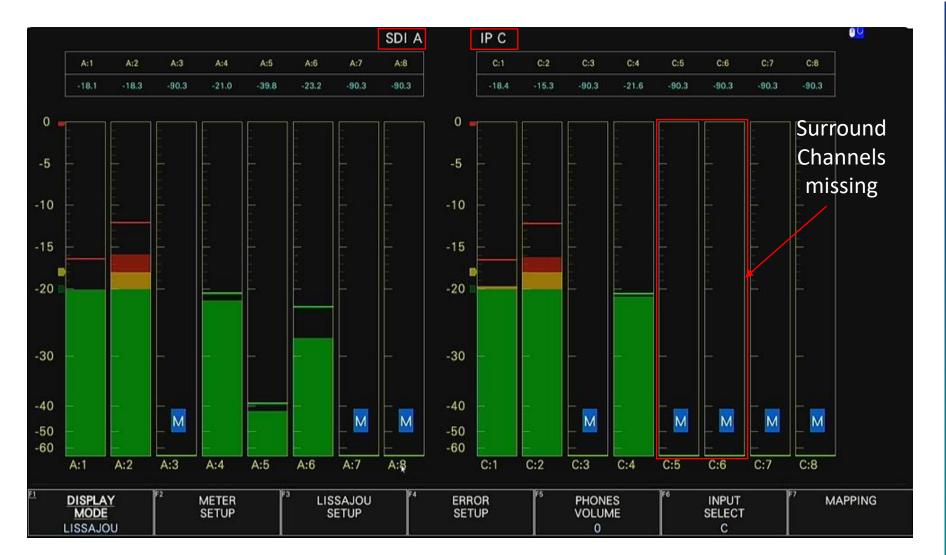



| PAYLOAD ID DISPLAY SMPTE | ST352            | PAYLOAD ID DISPLAY SMPTE S | PAYLOAD ID DISPLAY SMPTE ST352 |  |
|--------------------------|------------------|----------------------------|--------------------------------|--|
| INTERFACE LINE No.       | 10               | INTERFACE LINE No.         | 10                             |  |
| BYTE1                    | 10001001 [89]    | BYTE1                      | 10000101 [85]                  |  |
| VERSION ID               | SMPTE ST352-2011 | VERSION ID                 | SMPTE ST352-2011               |  |
| PAYLOAD ID               | 1125(1080) LINE  | PAYLOAD ID                 | 1125(1080) LINE                |  |
| DIGITAL INTERFACE        | 3Gb/s LEVEL-A    | DIGITAL INTERFACE          | 1.485Gb/s                      |  |
| BYTE2                    | 11001010 [CA]    | BYTE2                      | 00001010 [0A]                  |  |
| TRANSPORT STRUCTURE      | PROGRESSIVE      | TRANSPORT STRUCTURE        | INTERLACED                     |  |
| PICTURE STRUCTURE        | PROGRESSIVE      | PICTURE STRUCTURE          | INTERLACED                     |  |
| HDR / SDR                | SDR              | HDR / SDR                  | SDR                            |  |
| PICTURE RATE             | 60/1.001         | PICTURE RATE               | 60/1.001                       |  |
| BYTE3                    | 00000000 [00]    | BYTE3                      | 00100000 [20]                  |  |
| ASPECT RATIO             | UNKNOWN          | ASPECT RATIO               | 16:9                           |  |
| H SAMPLING               | 1920             | H SAMPLING                 | 1920                           |  |
| COLORIMETRY              | REC 709          | COLORIMETRY                | REC 709                        |  |
| SAMPLING STRUCTURE       | 4:2:2 YCbCr      | SAMPLING STRUCTURE         | 4:2:2 YCbCr                    |  |
| BYTE4                    | 00000001 [01]    | BYTE4                      | 00000001 [01]                  |  |
| CHANNEL ASSIGNMENT       | NOT USED         | CHANNEL ASSIGNMENT         | NOT USED                       |  |
| LUMINANCE / COLOR        | YCbCr            | LUMINANCE / COLOR          | YCbCr                          |  |
| AUDIO EMB MODE           | NOT USED         | AUDIO EMB MODE             | NOT USED                       |  |
| BIT DEPTH                | 10BIT            | BIT DEPTH                  | 10BIT                          |  |

- Session Description Protocol
- The same applies to ANC Data Analysis of -40 ANC Data stream and SDI embedded audio



### You don't have to .....






#### Day-to-Day Operations

- 'True Hybrid' operation allows you to ensure ancillary data like closed captions are present.
- Multiple analysis tools like PIC and WFM can be displayed in both IP and SDI.





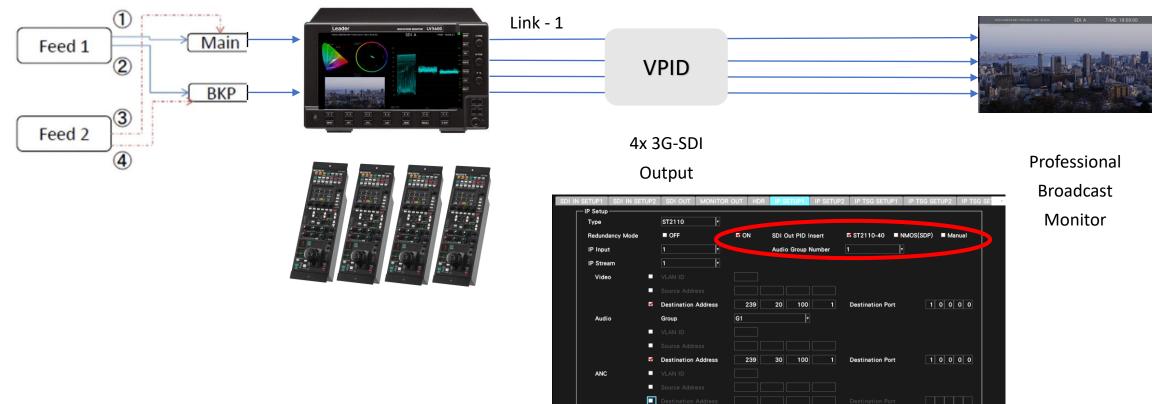
#### Day-to-Day Operations

 The same applies to Audio Analysis of -30 or -31 audio stream and SDI embedded audio.








#### IP to SDI Gateways

Test and Measurement products have always acted as gateways in broadcasters' facilities.

Now, with the introduction of IP, they are continuing to fulfil this role.



#### 2022-7







#### Vision Engineer in an IP World

It's not uncommon for Vision Engineers to have to control multiple cameras and this involves rapidly switching between cameras sources.

### Leader You don't have to





#### Day-to-Day **Operations**

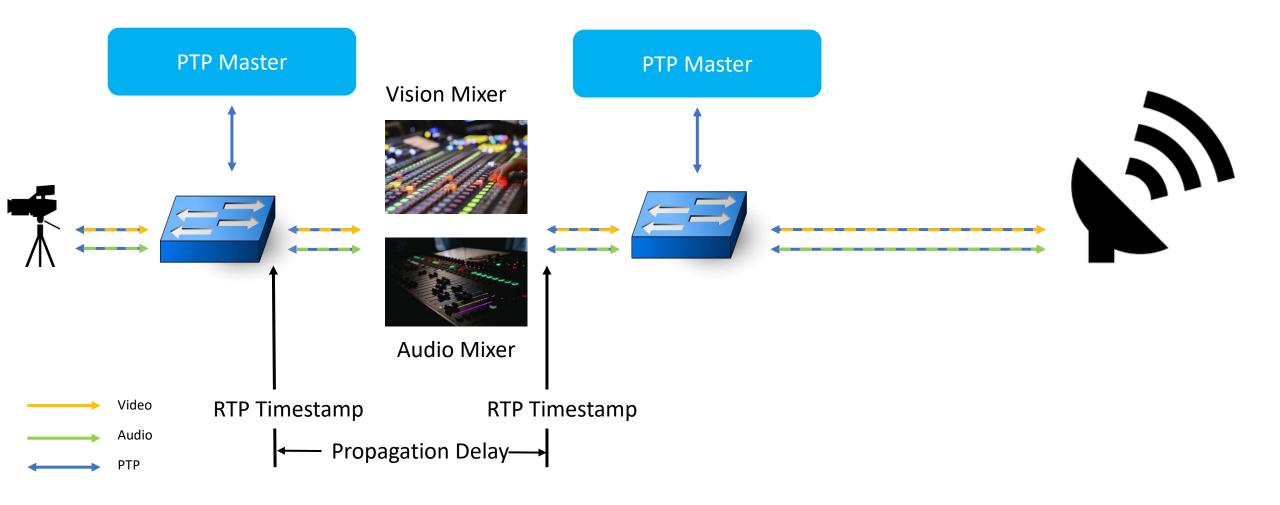
- Vision Engineers expect the same performance from IP test and measurement products, as they previously enjoyed with SDI.
  - They also don't care if the video source is IP or SDI, their job is to match the images, irrespective of underlying infrastructure.



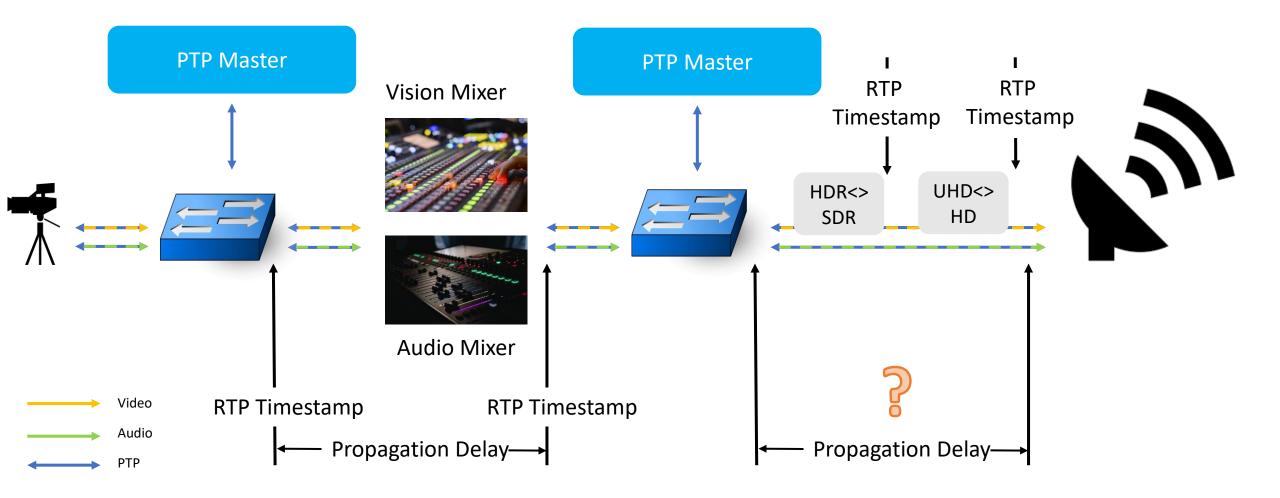


#### Audio-to-Video Synchronization

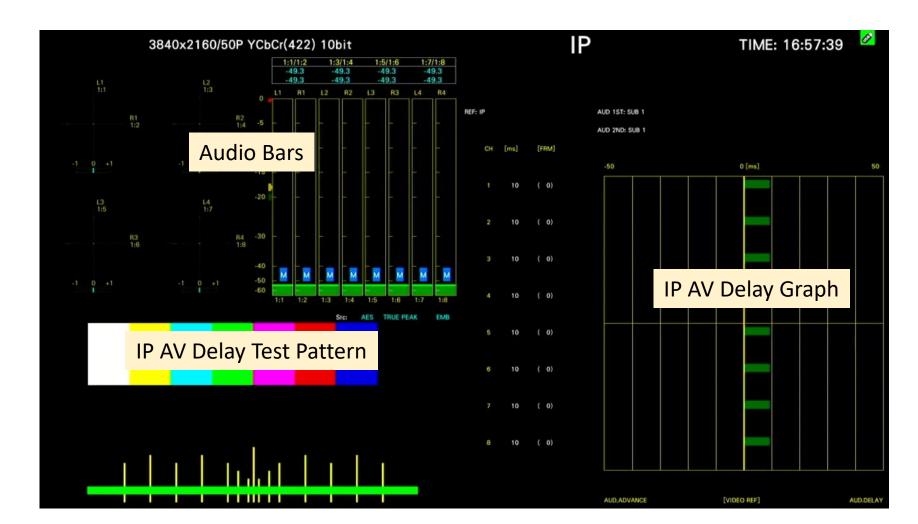
Also known as lip sync refers to the relative timing of audio (sound) and video (image) parts during playout.




#### Reference clock (PTP Grandmaster) PTP PTP (copy) (copy) ST2110 Sender Receiver Local clock Local clock RTP stream clock R SDP Media Media clock clock Stream data


#### Day-to-Day Operations

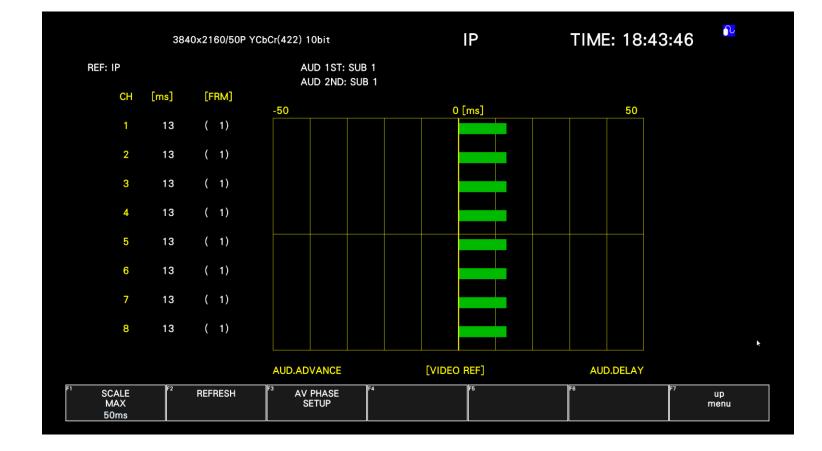
- It can be confirmed whether video, audio and ANC essences are synchronized with PTP by comparing the timing information of the PTP and the RTP timestamp.
- The transmitting side transmits the stream according to the time of the PTP and the receiving side reproduces in accordance with the time of PTP.





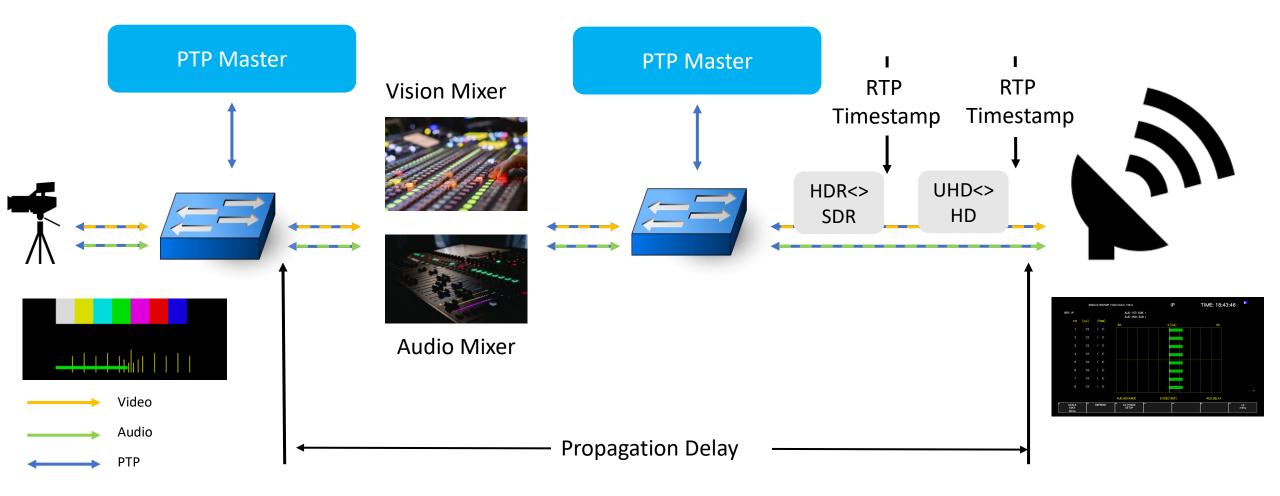







#### Day-to-Day Operations


- Using an IP AV
  Delay test pattern allows
   broadcasters to
   accurately identify
   the AV Delay.
- The IP AV Delay Graph displays the Audio Lead/Lag for each individual audio channel.





**AV Delay** 











Building a foundation of shared knowledge and practical experience in the area of IP media networking

Visit the Education Library at AIMSAlliance.org



Let us know what training and learning opportunities you'd like to see in the field of IP Media Networking

info@aimsalliance.org

#### Kevin Salvidge

- Sales Engineering Manager
- Email : salvidge@leadereurope.com
- Tel : +44 7826 178 752



SHOWCASE







If you would like more information including a copy of this presentation.



## Any Questions?













